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Abstract 

In a climate emergency context, energy retailers are essential in transitioning to low-carbon energy 

as they engage with producers and consumers. However, providing a low-carbon energy mix in 

compliance with low-carbon emissions targets requires hedging portfolios that improve financial 

performance. In this sense, we present a solution to the problem of hedging price and quantity risks 

using financial instruments based on price and weather indexes. We propose an optimal hedging 

strategy consisting of a portfolio of price and weather derivatives, allowing to transfer risk exposures 

to financial markets. We also find a vector of optimal quantities of each energy source according to 

expected demand. We evaluate the hedging efficiency by comparing the distribution of the retailer’s 

payoffs before and after hedging.  Our results provide energy retailers with evidence and tools to 

manage risks by defining appropriate hedging methods. We evaluate these solutions in various 

scenarios that include different combinations of energy generation sources. Our findings underline 

the significance of weather derivatives in optimizing energy portfolios, with implications for risk 

reduction and profit enhancement.  
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1. Introduction 

Over the last decades, power markets around the globe have evolved into deregulated markets, 

and in many countries, electricity is now traded under competitive rules (Mayer and Truck, 2018). 

Producers, traders, and large consumers can buy or sell power in organized markets as part of this 

deregulation. Energy retailers buy electricity from producers in a competitive wholesale market for 

(re)sale in the retail market (Boroumandet al., 2015). As a result of these dynamics, they face price 

and volumetric risks.  

Price risks are caused by high volatility in wholesale power prices, which directly affects retailers’ 

net earnings. Volumetric risk, associated with uncertainty in the electricity load, also affects retailers’ 

net earnings as they must meet varying customer demands at fixed market rates (Oum et al., 2006). 

Also, the inelasticity and the rigidity of supply caused by non-storability and plant outages expose 

retailers’ net profits (Stoft, 2002). Moreover, growing distributed renewable generation and self-

consumption increases the hedging needs of retailers, who are more exposed to higher demand 

uncertainty (Russo et al., 2022). Such risks have raised awareness of the importance and necessity of 

risk management in the competitive electricity market.  

The risk hedging problem of energy retailers has been studied from various perspectives in the 

literature. Most of them attempt to find an optimal portfolio of financial derivatives to mitigate losses 

that retailers may incur due to changes in energy prices and volume. These studies differ in the 

financial instruments, the objective function, the model, or the assumptions used to solve the problem. 

Recent works have included renewable energy sources (Fernandez et al. 2023); however, no research 

has been conducted on how these sources impact retailers’ payoffs.  

While including renewable energy sources (RES) contributes to the literature from a risk management 

and environmental perspective, it is worth considering whether it contributes to financial 

performance. That is if considering cleaner energy generation sources in an energy retailer’s hedging 
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problem adds value in financial terms. The relevance of this question is related to the correlation that 

RES exhibit with weather indices1, but also because its increasing use is pertinent to the current 

environmental context.  

Our society faces an energy challenge: The energy demand worldwide has reached levels that cannot 

be sustained in the future. At the same time, fossil fuels are limited, and their widespread use has 

severe environmental consequences (Michaelides, 2012). The world must transition to cleaner energy 

sources to reduce the planet’s carbon footprint and ensure sustainable living conditions. 

Consequently, evidence that including these sources has both an environmental and a financial benefit 

to retailers is essential.  

As market intermediaries, energy retailers play an essential role in transitioning to low-carbon energy 

as they engage with producers and consumers. However, providing a low-carbon energy mix in 

compliance with low-carbon emissions targets requires hedge portfolios that improve financial 

performance. This paper aims to provide evidence that renewable energy sources combined with an 

appropriate hedging strategy can be as efficient as nonrenewable ones. This would incentivize 

retailers and producers to use renewable sources, thereby motivating further study of the problem and 

generating solutions that will benefit society.  

In this work, we evaluate the hedging efficiency of renewable hedging strategies by comparing the 

financial benefits of the retailer’s hedging solution using renewable vs. non-renewable energy 

sources. Specifically, we evaluate the performance of the hedging strategies by comparing the 

distribution of the retailer’s payoffs before and after hedging. We evaluate these solutions in various 

scenarios that include different combinations of energy generation sources. As the basis of the 

analysis, we use a multi-commodity model in which the mean variance of the retailer’s profits is 

optimized. As a result, a price and weather hedging portfolio are obtained, as well as the optimal 

distribution of energy generation sources. We use data from the German electricity market, the largest 
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and the primary daily reference market for wholesale power in Europe, which is also strongly 

influenced by wind and solar production. Thus, with our work, we want to encourage future research 

on renewable energy sources from the retailer’s perspective, as we believe the electricity sector is 

crucial to achieving an energy and ecological transition. The rest of the document is organized as 

follows. After a brief literature review in Section 2, we present the methodology in Section 3. Then 

in Section 4, we present the results for the hedging strategies. Finally, in Section 6, we discuss the 

main conclusions of the work.  

2. Literature Review 

The energy deregulation process has resulted in several technical papers discussing methods of 

managing the multiple sources of uncertainty that affect the trade of energy. Regarding price 

hedging, Vehviläinen and Keppo (2003) develop an integrated framework for optimal price risk 

management using a portfolio of electricity derivatives. They use Monte Carlo simulation to obtain 

the optimal portfolio that maximizes the expected utility of terminal wealth. Näsäkkälä and Keppo 

(2005) develop a hedging strategy of cash flows using forward contracts based on an optimal hedge 

ratio. Datong P. Zhou et al. (2017) construct hedging strategies by profit maximizing forward 

contracts and call options portfolios as a function of uncertain aggregate user demand and wholesale 

prices. Other works about price hedging in electricity markets can be found in Deng and Oren 

(2006); Tegnér et al. (2017); Souhir et al. (2019); Xiang et al. (2019); Niromandfam et al. (2020) 

and the references therein.  

The retailer’s hedging problem of joint price and volumetric risks under an expected utility 

maximization criterion was addressed by Oum et al. (2006). They propose a hedging methodology 

using electricity derivatives with any payoff functions that can be replicated by a series of 

standardized derivatives (as in Carr and Madan (2001)). Some variants of this hedging problem using 

the VaR criterion have been addressed by Woo et al. (2004), Kleindorfer and Li (2005), and Oum 
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and Oren (2009). Later, Oum and Oren (2010) extend their method by optimizing the portfolio and 

the timing of hedge contracts. Similarly, Id-Brik and Roncoroni (2016) derive a closed-form solution 

to the static hedging problem of price and volumetric risk, using any index that exhibits statistical 

correlation to volumetric load.  

Although weather derivatives have gained traction in recent years and exhibit high correlation with 

RES, few studies have considered the inclusion of these sources in the retailers’ risk hedging problem. 

Brigatto and Fanzeres (2022) propose a risk-and ambiguity-constrained portfolio allocation model 

for backing a supply contract with the optimal combination of call/put options and renewable sources. 

Following this work, we are interested in proposing an optimal hedging strategy that consists of a 

hedging portfolio composed of price and weather derivatives for a retailer that has access to diverse 

sources of renewable energy. As well as investigating the impact of the inclusion of RES on the 

retailers’ hedging problem.  

3. Methodology 

In this section, we provide a detailed description of the methodology. We begin by introducing 

the hedging problem and the formulation of the optimization problem. Additionally, we present a 

proposition that enables a numerical solution to this problem. Finally, we present the performance 

metrics to be used in measuring the effectiveness of the hedging strategies.  

3.1 Optimal hedging 

In this section, we formulate the optimization problem so that the retailer maximizes its 

expected profits by choosing adequate hedging portfolios and weights for each energy source.  

Consider an energy retailer who needs to serve an uncertain electricity demand 𝑞 at a fixed price 𝑟. 

The retailer produces electricity from the wholesale market at the spot price. Electricity can be 

generated from various sources: hydro, wind, solar, and so on. As a result, their returns might be 
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exposed not only to price risks but also to volumetric (weather) risks. To protect against those risks, 

the retailer can construct hedging portfolios composed of hedging instruments such as options and 

forwards with weather indices and energy prices as underlying.  

The retailer’s profit is (𝑟 − 𝑝𝑇𝜔)𝑞 where 𝑝 is the price vector for 𝑚 energy sources, and 𝜔 is the 

weight vector contains the proportion (percentage) of the total quantity to purchase from each source. 

The retail price 𝑟 is known, while demand 𝑞 and spot prices vector 𝑝 are random. We construct 

separately the payoffs of the price hedging portfolio and the weather hedging portfolio. Let 𝑀𝑝 and 

𝑀ℎ be the matrices containing the payoffs of each portfolio. Following the put-call parity3, in both 

portfolios there are put options, a forward and a treasury risk-free bond. Without losing generality, 

we will assume that in both portfolios, there are 𝑛 put options, one forward and one bond for each 

underlying. In the price hedging portfolio, the underlying assets are the prices of 𝑚 sources of 

generation 𝑝1, 𝑝2, ⋯ , 𝑝𝑚  and in the volumetric hedging portfolio, the underlying assets are l weather 

indices ℎ1, ℎ2,⋯ , ℎ𝑙. Then the matrices 𝑀𝑝 and 𝑀ℎ are:  

𝑀𝑝 =

(

 
 
 
 

(𝑘𝑝1
1 − 𝑝1)

+
(𝑘𝑝2
1 − 𝑝2)

+
⋯ (𝑘𝑝𝑚

1 − 𝑝𝑚)
+

(𝑘𝑝1
2 − 𝑝1)

+
(𝑘𝑝2
2 − 𝑝2)

+
⋯ (𝑘𝑝𝑚

2 − 𝑝𝑚)
+

⋮ ⋮ ⋱ ⋮

(𝑘𝑝1
𝑛 − 𝑝1)

+
(𝑘𝑝2
𝑛 − 𝑝2)

+
⋯ (𝑘𝑝𝑚

𝑛 − 𝑝𝑚)
+

𝑝1 − 𝑓𝑝1 𝑝2 − 𝑓𝑝2 ⋯ 𝑝𝑚 − 𝑓𝑝𝑚
1 1 ⋯ 1 )

 
 
 
 

 

𝑀ℎ =

(

 
 
 
 
 

(𝑘ℎ1
1 − ℎ1)

+
(𝑘ℎ2
1 − ℎ2)

+
⋯ (𝑘ℎ𝑙

1 − ℎ𝑙)
+

(𝑘ℎ1
2 − ℎ1)

+
(𝑘ℎ2
2 − ℎ2)

+
⋯ (𝑘ℎ𝑙

2 − ℎ𝑙)
+

⋮ ⋮ ⋱ ⋮

(𝑘ℎ1
𝑛 − ℎ1)

+
(𝑘ℎ2
𝑛 − ℎ2)

+
⋯ (𝑘ℎ𝑙

𝑛 − ℎℎ)
+

ℎ1 − 𝑓ℎ1 ℎ2 − 𝑓ℎ2 ⋯ ℎ𝑙 − 𝑓ℎ𝑙
1 1 ⋯ 1 )

 
 
 
 
 

 

 
3 The put–call parity shows that the value of a European call can be deduced from the value of a European put 

with the same strike price and maturity date, a zero-coupon bond, and a share (or a forward). 
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where (𝑘𝑝𝑖
𝑗
− 𝑝𝑖)

+
=  max{kpi

j
− pi, 0} and 𝑘𝑝𝑖

𝑗
 is the strike price of the 𝑗𝑡ℎ put option whose 

underlying is the price 𝑝𝑖 (energy generation source 𝑖). Similarly, 𝑘ℎ𝑖
𝑗

 is the strike price of the 𝑗𝑡ℎ put 

option underlying is weather index 𝑖. Also, 𝑓𝑝𝑖 is the contractual fixed price of the forward to be paid 

for one MWh of energy with price 𝑝𝑖 and 𝑓ℎ𝑖 is the contractual fixed price of the forward for weather 

index ℎ𝑖. The total payoff of each portfolio can be calculated with matrices of weights (proportions) 

for each instrument.  

Let Γ, Λ be the proportion matrices for each portfolio respectively, i.e., the amount of each instrument 

in the hedging portfolios. Matrix Γ has the same dimensions as 𝑀𝑝 and Λ the same as 𝑀ℎ. If we use 

the Frobenius inner product ⟨∙,∙⟩𝐹 , then the payoff of the price hedging portfolio is ⟨𝑀𝑝, Γ⟩𝐹
 and the 

payoff of the weather hedging portfolio is ⟨𝑀ℎ , Λ⟩𝐹 .Then the total retailer’s profit is (𝑟 − 𝑝𝑇𝜔)𝑞 +

⟨𝑀𝑝, Γ⟩𝐹 + ⟨𝑀ℎ , Λ⟩𝐹 .  

To find an optimal hedging strategy, we propose the following optimization problem using the mean-

variance utility function.  

max
𝜔,Γ,Λ

𝔼Ψ [(𝑟 − 𝑝𝑇𝜔)𝑞 + ⟨𝑀𝑝, Γ⟩𝐹
+ ⟨𝑀ℎ , Λ⟩𝐹] − 𝑎𝑉𝑎𝑟

Ψ [(𝑟 − 𝑝𝑇𝜔)𝑞 + ⟨𝑀𝑝, Γ⟩𝐹
+ ⟨𝑀ℎ , Λ⟩𝐹]  

s.t  𝔼Φ⟨𝑀𝑝, Γ⟩𝐹 = 0 (1) 

𝔼Φ⟨𝑀ℎ, Λ⟩𝐹 = 0 (2) 

𝜔𝔼Ψ[𝑞] ≤ 𝑐 (3) 

𝑙 ≤ 𝜔 ≤ 𝑢 (4) 

𝑒𝑇𝜔 = 1,𝜔𝑖 ≥ 0 (5) 

In this model, Ψ is a probability measure that represents the ER beliefs on the real distribution of the 

realization of 𝑝, 𝑞 and h, and Φ is a risk-neutral probability measure (not unique since the market is 

incomplete). Constraints 1 and 2 indicate that the portfolios with payoffs ⟨𝑀𝑝, Γ⟩𝐹 and ⟨𝑀ℎ, Λ⟩𝐹 are 

self-financed. Constraint 3 is related to the limits of installed generation capacity by energy source 

defined in vector c. Constraint 4 represents political and/or environmental restrictions of maximum 
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and minimum consumption of each of the generation sources, and finally, Constraint 5 indicates that 

the weights of each energy source must be non-negative and add up to 100%.  

3.2 Optimal solution 

In this section, we present an approach to solve the optimization model introduced previously. 

We assume a discrete setting with 𝑀 prices for each generation source, 𝐿 values for each weather 

index, and 𝑁 values for quantity. That is, we have sets 𝑃 = {𝑝1
𝑖 ,⋯ , 𝑝𝑚

𝑖 : 𝑖 = 1,⋯ ,𝑀}, 𝐻 =

{ℎ1
𝑖 ,⋯ , ℎ𝑙

𝑖: 𝑖 = 1,⋯ , 𝐿} 𝑎𝑛𝑑 𝑄 = {𝑞𝑖: 𝑖 = 1,⋯ ,𝑁} which contain possible prices, weather indices 

and quantities respectively. In this setting, the retailer’s beliefs distribution 𝛹 is a probability measure 

supported on 𝑃 × 𝐻 × 𝑄 and the risk-free distribution Φ is a probability measure supported on 𝑃 × 𝐻.  

Proposition 1.  Let: 1 𝜇𝑝𝑞 = 𝔼
Ψ[𝑝𝑞] the expected vector of prices multiplied by quantity for each 

generation source. 2. 𝜇𝑞 = 𝔼
Ψ[𝑞] the expected quantity. 3. 𝜇𝑝 = 𝔼

Ψ[𝑝] the expected matrix of price-

hedging portfolio payoffs. 4. 𝜇ℎ = 𝔼
Ψ[𝑀ℎ] the expected matrix of weather-hedging portfolio 

payoffs. 5. 𝜇𝑝
Φ = 𝔼Φ[𝑀𝑝] the expected matrix of price-hedging portfolio payoffs under risk-neutral 

probability. 6. 𝜇ℎ
Φ = 𝔼Φ[𝑀ℎ]  the expected matrix of weather-hedging portfolio payoffs under risk-

neutral probability. 7. 𝜎𝑞
2 = 𝑉𝑎𝑟𝛹[𝑞] the variance of the quantity. 8. Σ𝑝𝑞 = 𝑉𝑎𝑟

𝛹[𝑝𝑞] the variance 

of the product between the vector of prices and the quantity. 9. Σ𝑝𝑞,𝑞 = 𝐶𝑜𝑣
𝛹[𝑝𝑞, 𝑞] the covariance 

vector between quantity and the product of prices and quantity. 10. Σ𝑀𝑝 = 𝑉𝑎𝑟
𝛹[𝑀𝑝] the variance 

tensor of random matrix 𝑀𝑝.  11. Σ𝑀ℎ = 𝑉𝑎𝑟
𝛹[𝑀ℎ] the variance tensor of random matrix 𝑀ℎ. 12. 

Σ𝑀𝑝, 𝑀ℎ = 𝐶𝑜𝑣
𝛹[𝑀𝑝,𝑀ℎ] the covariance tensor of random matrices 𝑀𝑝 and 𝑀ℎ. 13. Σ𝑀𝑝,𝑞  =

 𝐶𝑜𝑣𝛹[𝑀𝑝,𝑞] the covariance tensor of random matrix 𝑀𝑝 and random variable 𝑞. 14. Σ𝑀ℎ,𝑞 =

𝐶𝑜𝑣𝛹[𝑀ℎ,𝑞] the covariance tensor of random matrix 𝑀ℎ and random variable 𝑞. 15. Σ𝑀𝑝,𝑝𝑞 =

𝐶𝑜𝑣𝛹[𝑀𝑝,𝑝𝑞] the covariance tensor of random matrix 𝑀𝑝 and random vector 𝑝𝑇𝑞. 16. Σ𝑀ℎ,𝑝𝑞 =

𝐶𝑜𝑣𝛹[𝑀ℎ,𝑝𝑞] the covariance tensor of random matrix 𝑀ℎ and random vector 𝑝𝑇𝑞.  
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Then the optimization model is equivalent to  

𝑟𝜇𝑞 − 𝑎𝑟
2𝜎𝑞

2 +max
𝜔,Γ,Λ

− 𝜇𝑝𝑞
𝑇 𝜔 +⟨𝜇𝑝, Γ⟩𝐹 + ⟨𝜇ℎ , Λ⟩𝐹 − 𝑎 {𝜔

𝑇Σ𝑝𝑞𝜔 − 2𝑟Σ𝑝𝑞,𝑞
𝑇 𝜔 + ⟨ΣMp , Γ ⊗ Γ⟩

𝐹
+

⟨ΣMh , Λ ⊗ Λ⟩
𝐹
+ 2𝑟 ⟨ΣMp,𝑞 , Γ⟩

𝐹
− 2 ⟨ΣMp,𝑝𝑞 , 𝜔 ⊗ Γ⟩

𝐹
+ 2𝑟⟨ΣMh,𝑞 , Λ⟩𝐹

− 2⟨Σℎ,𝑝𝑞 , 𝜔 ⊗ Λ⟩
𝐹
+

2 ⟨ΣMp,𝑀ℎ , Γ ⊗ Λ⟩
𝐹
} 

s.t      ⟨𝜇𝑝
Φ, Γ⟩

𝐹
= 0 (1) 

⟨𝜇ℎ
Φ, Λ⟩

𝐹
= 0 (2) 

𝜔𝜇𝑞 ≤ 𝑐 (3) 

𝑙 ≤ 𝜔 ≤ 𝑢 (4) 

𝑒𝑇𝜔 = 1,𝜔𝑖 ≥ 0 (5) 

Using Proposition 1. and a quadratic optimization solver we can then find a numerical solution to the 

problem. To check if the numerical solution is indeed optimal, we use the 𝐾𝐾𝑇 conditions that allow 

us to verify if the necessary conditions are met.  

3.3 Performance metrics 

This section describes the different metrics we will use to measure hedging performance. This 

methodology is particularly useful when there are several commodities or derivative instruments to 

consider. In these cases, examining the hedge ratio or correlation between the underlying and the 

asset/ commodity to be hedged is insufficient. In fact, the strategy should be evaluated as a whole, 

considering the correlations and interactions between all the portfolio elements. Thus, we analyze the 

payoff distributions before and after hedging to measure the impact of hedging.  

Following Ederington (1979) we define the hedging effectiveness as the percent reduction in the 

variance. 

𝑒 = 1 −
𝑉𝑎𝑟[𝑃𝑎𝑦𝑜𝑓𝑓 𝑎𝑓𝑡𝑒𝑟 ℎ𝑒𝑑𝑔𝑖𝑛𝑔]

𝑉𝑎𝑟[𝑃𝑎𝑦𝑜𝑓𝑓 𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑒𝑑𝑔𝑖𝑛𝑔]
= 1 −

𝑉𝑎𝑟 [(𝑟 − 𝑝𝑇𝜔)𝑞 + ⟨𝑀𝑝, Γ⟩𝐹 +
⟨𝑀ℎ , Λ⟩𝐹] 

𝑉𝑎𝑟[(𝑟 − 𝑝𝑇𝜔)𝑞]
 

(12) 
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So 0 < 𝑒 ≤ 1 measures the amount of variance in payoffs that is reduced by hedging. 

We calculate the VaR and ES for the distribution of the payoffs after hedging. Value at Risk is defined 

as the loss level that will not be exceeded with a specified probability α, while Expected Shortfall is 

the expected loss given that the loss is greater than the VaR level. Mathematically, where 𝐹𝑋 is the 

cumulative distribution function of the payoffs, we empirically estimate the VaR and the ES using 

the percentile estimates of the historical payoff of the retailers.  

𝑉𝑎𝑅𝛼(𝑋) = − inf  {𝑥 ∈ ℝ: 𝐹𝑋(𝑥) > 𝛼} (12) 

𝐸𝑆𝛼(𝑋) = −
1

𝛼
∫ 𝑉𝑎𝑅𝛾(𝑋)𝑑𝛾
𝛼

0

 
(13) 

We will present the percent reduction after hedging for both the Value at Risk and Expected Shortfall 

as: 

%𝑉𝑎𝑅𝛼 = 1 −
𝑉𝑎𝑅𝛼

𝑎𝑓𝑡𝑒𝑟 ℎ𝑒𝑑𝑔𝑖𝑛𝑔

𝑉𝑎𝑅𝛼
𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑒𝑑𝑔𝑖𝑛𝑔

;%𝐸𝑆𝛼 = 1 −
𝐸𝑆𝛼

𝑎𝑓𝑡𝑒𝑟 ℎ𝑒𝑑𝑔𝑖𝑛𝑔

𝐸𝑆𝛼
𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑒𝑑𝑔𝑖𝑛𝑔

  

We define the risk-adjusted payoffs as 

𝜂∗ = −
𝐸[𝑃𝑎𝑦𝑜𝑓𝑓 𝑎𝑓𝑡𝑒𝑟 ℎ𝑒𝑑𝑔𝑖𝑛𝑔] − 𝐸[𝑃𝑎𝑦𝑜𝑓𝑓 𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑒𝑑𝑔𝑖𝑛𝑔]

√𝑉𝑎𝑟[𝑃𝑎𝑦𝑜𝑓𝑓 𝑎𝑓𝑡𝑒𝑟 ℎ𝑒𝑑𝑔𝑖𝑛𝑔] − √𝑉𝑎𝑟[𝑃𝑎𝑦𝑜𝑓𝑓 𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑒𝑑𝑔𝑖𝑛𝑔]

= −
𝐸⟨𝑀𝑝, Γ⟩𝐹 +

⟨𝑀ℎ, Λ⟩𝐹

√𝑉𝑎𝑟 [(𝑟 − 𝑝𝑇𝜔)𝑞 + ⟨𝑀𝑝, Γ⟩𝐹 +
⟨𝑀ℎ, Λ⟩𝐹] − √𝑉𝑎𝑟[(𝑟 − 𝑝

𝑇𝜔)𝑞]

 

which is equivalent to calculating the slope of the line between the risk adjusted payoffs before and 

after hedging (see Fig 1).. In this case, the higher the value, the better the strategy, as it allows us to 

achieve a higher risk adjusted payoff after hedging.  
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Fig. 1. Illustration of risk-adjusted payoff calculation 

4. Results 

In this section, we evaluate our models with real data from the German electricity market. Several 

reasons make the study of the German market relevant. Firstly, the German market is large, with a 

low HHI index and a prominent level of liquidity. Also, the German electricity market is the largest 

and the primary daily reference market for wholesale power in Europe. Consequently, the German 

electricity market plays a key role in the energy transition due to its ability to absorb large volumes 

of electricity from renewable sources. 

In Table 1, we present the data sources, frequency, and units for each variable. The study period is 

from 1st January of 2015 to 31st March of 2023.  

Table 1. 

Data sources and units 

Data Notation Units Frequency Source 

Market prices 𝑝 Euro/MWh Monthly https://www.energy-charts.de/}{https://www.energy-charts.de 

Quantity demand 𝑞 MWh Daily https://www.smard.de/}{https://www.smard.de 

Temperature ℎ1 Â°C Hourly https://www.energy-charts.de/}{https://www.energy-charts.de 

Wind Speed ℎ2 m/s Hourly https://www.energy-charts.de/}{https://www.energy-charts.de 

Installed capacity 𝑐 MWh - https://www.energy-charts.de/}{https://www.energy-charts.de 

We use the Gurobi optimizer for numerical experiments to find the optimal hedging portfolios and 

quantities. We use a retail rate of r = 100 Euro/MWh and a risk aversion parameter of 𝑎 =  1.  
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We will discuss five cases: all available sources, only renewable sources, only non-renewable sources, 

a mix between non-renewable and solar, and a mix between non-renewable and wind. For the last two 

cases we did not present the analysis in detail since the solutions were the same as for another case. 

Specifically, the solution for the renewable solar case is the same as that of non-renewable. And the 

renewable + wind solution was the same as the base case.  

4.1. Base Case 

In the base case, all sources of generation are available (subject to the installed capacity limit indicated 

by the vector c). The optimal solution for this case can be seen in Fig 2. Two components make up 

this solution: the first is the optimal distribution of generation sources from which the retailer should 

purchase its energy. Second, there is the number of instruments required for the price and weather 

hedging portfolios. As can be seen in part A of Fig 2, the optimal distribution of sources is 

characterized by low weights assigned to renewable sources. There are approximately 22% of 

renewable energy sources allocated (only wind onshore and offshore). Additionally, no weight is 

assigned to hydro, solar, or biomass energy sources. Accordingly, a substantial proportion of sources 

are attributed to fossil fuels, which can be explained in part by their lower price compared to other 

sources. The optimal number of instruments in each portfolio is shown in part b of Fig 2. The number 

of options and forwards associated with each underlying index is presented; however, it is important 

to keep in mind that the model assumes that short and long positions can be taken in these instruments. 

The strategy recommends maintaining a significant position in both the price and weather portfolios, 

although the weather portfolio is more significant. 



13 

 

  
(a) (b) 

Fig. 2. Optimal solution for the base case 

 

  
(a) (b) 

Fig. 3. Profit distributions for hedged and unhedged payoffs (thousands of Euros) for the base case. 

Next, we will examine how this hedging affects the retailer’s profits as shown in Fig 3. The blue line 

indicates the distribution of profits after hedging and the black line indicates profits before hedging. 

As can be seen from the graph, hedging portfolios have a positive impact on the retailer’s profits. 

Using a hedging strategy, it is possible to significantly reduce the risk without adversely affecting 

profits. We observe that the distribution of unhedged profits is skewed heavily to the left, indicating 

that the retailer may suffer significant losses. These losses are obviously mitigated by hedging. Fig 
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3b also demonstrates this, where the quantiles are shown, indicating the wide difference between 

quantiles 0 and 0.5 between the two distributions.  

Table 2. 

Descriptive statistics of unhedged and hedged payoffs (thousands of Euros) for the base case 

  Mean Std Min 25% 50% 75% Max 

Unhedged 21.53 39.73 -216.1 28.22 37.07 41.08 54.55 

Hedged (Price \& Weather) 37.14 4.46 -13.37 35.17 37.49 39.67 52.52 

Hedged (Only Price) 38.03 4.05 -8.45 36.54 38.12 40.38 50.26 

Hedged (Only Weather) 20.65 39.78 -221.02 26.81 35.99 40.44 56.82 

Table 2 presents the descriptive statistics of the retailer’s profits before and after hedging. 

Furthermore, statistics are presented for situations in which only price hedging or only weather 

hedging have been undertaken. On the one hand, the results support what was shown in the previous 

graphs: hedging reduces the risk (standard deviation) while increasing the expected value. On the 

other hand, maximum losses are much lower when hedging. A combination of price hedging and 

weather hedging is, therefore, better than using one or the other alone. When analyzing the individual 

solutions of price and weather, we could affirm that the price portfolio contributes the most to the 

reduction of risk, whereas the weather portfolio favors an increase in profits (this is not always the 

case, as we will see in the following cases).  

4.1. Only Renewable Sources 

The following case considers a scenario where only renewable energy is available. Fig 4 presents the 

optimal solution in terms of the weights assigned to each source and the number of instruments in the 

hedging portfolios. We observe that approximately 48% is allocated to wind sources (onshore and 

offshore), 26% to hydro sources, 16% to biomass and the remainder to solar. Wind energy’s 

dominance is not only due to its price compared to other sources, but also to the use of weather 

derivatives based on wind speed in the hedging portfolios. Due to the higher correlation between the 

prices of these instruments and the price of wind energy, hedging is likely to be more effective when 

there is a higher proportion of wind energy.  
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(a) (b) 

Fig. 4. Optimal solution for the renewable case 

Meanwhile, when taking a closer look at the number of instruments for hedging portfolios, an 

analogous situation as in the base case can be observed. However, when we carefully review the 

quantities of each instrument, we can see that the optimal solution for renewable sources requires 

twice as many financial instruments as the base case. According to this result, more financial 

derivative instruments are required for scenarios in which renewable energy sources dominate to 

achieve similar hedging as the base scenario. As a result of the greater volatility of renewable energy 

sources, it is logical that more instruments are required since there is a greater risk involved. It is 

further evident from this result that as the transition to renewable generation sources is made, a greater 

degree of liquidity will be required in the derivatives market to allow retailers to effectively hedge 

their risks. Moreover, this result gives rise to the question of whether it is necessary not only to 

maintain and strengthen current weather derivative instruments, but also to develop other derivatives 

related to renewable energy sources. For example, derivatives based on solar radiation, river flows, 

among others.  
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(a) (b) 

Fig. 5. Profit distributions for hedged and unhedged payoffs (thousands of Euros) for the renewable case.
 4

 

As a next step, we evaluate the results of the hedging. Firstly, Fig 5 shows the distribution of the 

retailer’s profits before and after hedging. Similarly to the base case, hedging generates a positive 

impact on profits. As a result, the variance is reduced, losses are reduced, and at the same time, the 

expected profits are increased. Table 3 contains the descriptive statistics for the profits, which also 

confirm this conclusion. Furthermore, the table demonstrates that combining the price hedging 

portfolio with the weather hedging portfolio is better than doing just one or the other. Moreover, 

contrary to what occurred in the base case, on this occasion, the weather portfolio contributed 

significantly to the reduction of risk, whereas the price portfolio contributed to the increase in profits. 

This makes sense if we consider that there are more instruments based on weather than on electricity 

price.  

Table 3. 

Descriptive statistics of unhedged and hedged payoffs (thousands of Euros) for the renewable case 

  Mean Std Min 25% 50% 75% Max 

Unhedged 21.55 39.60 -223.87 27.64 36.84 41.05 55.92 

Hedged (Price & Weather) 37.62 5.00 -21.58 35.59 37.87 40.21 60.21 

Hedged (Only Price) 16.17 37.26 -8.42 -2.34 0.00 9.68 206.28 

Hedged (Only Weather) -0.11 1.89 -4.00 -1.59 -0.18 1.27 5.64 

 
4 Density functions are estimated with a Kernel Density Estimate (KDE) using the function kdeplot from seborn in Python. 

A KDE plot smooths the observations with a Gaussian kernel, producing a continuous density estimate. 
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4.2. Only Non-Renewable Sources 

Lastly, we present the results for the case in which only non-renewable sources of energy are 

considered. In Fig 6, we present the optimal distribution of sources and the number of instruments in 

the hedging portfolios. Many of the sources assigned are fossil resources (93%), like the results 

obtained in the base case. Likewise, it is observed that the strategy suggests having a significant 

position in all derivative instruments (including weather-based instruments). However, when 

comparing the quantities with the two previous cases, we observe that in this case fewer instruments 

are needed. This result can be explained by the lower volatility of non-renewable energy sources, 

therefore less weather-based instruments are needed, as they are not linked to weather conditions. 

On the other hand, Fig 7 shows the profit distributions before and after hedging. After hedging, the 

distribution no longer has a heavy left tail, mitigating the retailer’s losses. Furthermore, Fig 7 shows 

that profits are less widespread after hedging, without shifting leftwards compared to the before-

hedging distribution. Table 4 presents the descriptive statistics of the results. In this case, hedging 

solely based on price yields better results than hedging based on both price and weather. Although 

the differences are small, this result makes sense since the weather portfolios are composed of 

variables highly correlated with the generation of renewable energy sources. Although it would not 

be correct to say that it is better to only do price hedging, it is true that it is not essential to do so in 

this case.  

Table 4. 

Descriptive statistics of unhedged and hedged payoffs (thousands of Euros) for the nonrenewable case 

  Mean Std Min 25% 50% 75% Max 

Unhedged 21.48 39.57 -206.30 28.18 37.14 41.15 53.77 

Hedged (Price & Weather) 37.28 4.05 -3.36 35.21 37.56 39.77 49.92 

Hedged (Only Price) 38.22 3.62 1.13 36.63 38.30 40.60 47.00 

Hedged (Only Weather) 20.53 39.62 -210.79 26.84 36.02 40.42 56.69 
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(a) (b) 

Fig. 6. Optimal solution for the non-renewable case 

 

  
(a) (b) 

Fig. 7. Profit distributions for hedged and unhedged payoffs (thousands of Euros) for the non-renewable case. 

 

4.3. Performance 

Table 5 displays the performance metrics for each of the previously analyzed scenarios. Starting with 

the percentage reduction in VaR (Value at Risk), it can be observed that in all cases, the hedging 

strategy achieves a VaR reduction of more than 100%. Furthermore, when analyzing VaR before and 

after hedging, in all cases, we found that after hedging, the VaR becomes negative, indicating that at 
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a 99% confidence level, there are no losses but rather gains. Accordingly, hedging, as demonstrated 

by previous results, has a significant impact on losses mitigation. It is also important to note that the 

cases with the greatest reduction in VaR are those that primarily rely on nonrenewable energy sources. 

However, the difference from the other cases is not large enough to imply an advantage in using non-

renewable energy sources. The results for the Expected Shortfall (ES) are similar. A reduction of 

more than 100% was achieved in all cases, with the greatest reduction occurring in cases in which 

non-renewable sources predominated.  

Regarding the hedging efficiency (HE), we note that the values for all scenarios are close to 98%, 

indicating that hedging strategies entirely reduce the variance of the retailer’s profits. Furthermore, 

all values are quite similar across different scenarios, indicating that, regardless of the available 

sources of energy generation, the proposed hedging strategy can deliver efficient solutions (variance 

reduction).  

Finally, when analyzing the risk-adjusted payoffs, a particular situation arises. It is observed that a 

significantly higher value is observed for renewable energy sources in this case. As a result, the 

hedging strategy for renewable sources can improve the expected value of profits when risk reduction 

is considered. For the other scenarios, the values are quite similar and hover around 0.44.  

Table 5.  

Performance metrics for the different scenarios of hedging strategies 

  %VaR %ES HE 𝜂 

All 1.1149 1.0544 0.9874 0.4425 

Renewable 1.1085 1.0279 0.9841 0.4644 

Non-renewable 1.1370 1.0821 0.9895 0.4449 

Non-renewable + solar 1.1370 1.0821 0.9895 0.4449 

Non-renewable + wind 1.1149 1.0544 0.9874 0.4425 

 

Two important conclusions can be drawn from these results. The first is related to the impact of 

hedging. Hedging provides numerous benefits that could be observed repeatedly and exhaustively. 

The results showed that hedging not only significantly reduces risk but also improves the expected 
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value of profits. On the other hand, the second and most important conclusion is that the hedging 

efficiency is maintained regardless of the availability of energy generation sources. Furthermore, in 

the presence of renewable energy sources, hedging is equally effective as when non-renewable 

sources are used. It corroborates that the hedging strategy is robust enough to handle any scenario. 

Furthermore, it allows us to conclude that this strategy will continue to remain valid and appropriate 

as time passes, and more renewable energy sources are used to meet global decarbonization goals.  

4.4. Different Risk Aversion Parameters 

To complete the analysis of this section, we will conduct a sensitivity analysis on the risk aversion 

parameter. This parameter, as the name suggests, represents how risk-averse or not the retailer is. In 

this sense, the small value of this parameter implies that the retailer is not risk-averse and therefore is 

willing to assume greater risk to obtain (in expected value) a greater return.  

We varied the parameter a above and below the base value (a=1) to observe changes in hedging. Table 

6 presents the descriptive statistics for the profits for all cases. The same situation is observed in all 

cases: as the risk aversion parameter is lower, the distribution of the profits seems to move to the 

right, but at the same time, it has a greater variance. Conversely, when the risk aversion parameter is 

higher (the retailer is more risk averse), the distribution moves to the left, and the values are mostly 

concentrated near the mean (there is less variance). That is, when the retailers is more risk-averse, 

hedging generates a solution with less variance and less profit. When the retailer is less risk-averse, 

hedging allows for greater profits but also greater risks. In this way, although in all cases good 

hedging is achieved, the result in terms of variance and expected profits will depend on the retailer’s 

risk aversion. In this sense, it is recommended to calibrate the parameter when using the proposed 

model.  

Table 6. 

Descriptive statistics for hedged payoffs when changing the risk aversion parameter. 

Case Metric 𝑎 =  1 × 10−3 𝑎 =  1 𝑎 =  10 𝑎 =  100 

Base Mean 49.7418 37.1439 37.1340 37.1330 



21 

 

Std 5.2898 4.4551 4.4549 4.4549 

Min -6.0931 -13.3652 -13.3737 -13.3746 

25% 47.1369 35.1724 35.1623 35.1614 

50% 50.1943 37.4945 37.4847 37.4837 

75% 53.0424 39.6683 39.6582 39.6572 

Max 68.4627 52.5192 52.5075 52.5064 

Renewable 

Mean 48.6009 37.6165 37.6066 37.6056 

Std 6.0407 4.9979 4.9974 4.9974 

Min -18.8944 -21.5831 -21.5930 -21.5940 

25% 45.8939 35.5933 35.5837 35.5827 

50% 49.0348 37.8682 37.8584 37.8575 

75% 52.0392 40.2115 40.2013 40.2003 

Max 75.1857 60.2114 60.1979 60.1966 

Non-Renewable 

Mean 48.7011 37.2825 37.2709 37.2697 

Std 4.7012 4.0492 4.0498 4.0498 

Min 3.3962 -3.3616 -3.3781 -3.3798 

25% 46.1956 35.2137 35.2016 35.2004 

50% 49.0546 37.5595 37.5483 37.5472 

75% 51.7382 39.7740 39.7627 39.7616 

Max 61.8798 49.9197 49.9114 49.9106 

 

4. Conclusions 

We explored hedging strategies in various scenarios related to energy generation sources. Detailed 

subsections dissected scenarios such as renewable, non-renewable, and mixed sources. For each case, 

we presented optimal distributions of generation sources and the corresponding hedging portfolios.  

The impact of hedging profits was thoroughly examined through visual representations and statistical 

analyses.  

In scenarios involving renewable sources, our findings demonstrated the intricate dynamics of 

optimal source allocations, emphasizing the dominance of wind energy and the need for a substantial 

number of financial instruments. The effectiveness of our hedging strategy was corroborated by a 

notable reduction in risk and an improvement in expected profits. Results consistently showcased the 

symbiotic relationship between price and weather hedging portfolios, each playing a crucial role in 

mitigating risk and enhancing profits.  

In scenarios dominated by non-renewable sources, our analysis highlighted the efficient use of 

hedging. The distribution of profits, before and after hedging, showed a significant reduction in risk 
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and the stabilization of profits. Comparative analyses across scenarios revealed the robustness of our 

hedging strategy, demonstrating its adaptability to diverse energy generation landscapes.  

A comprehensive performance evaluation, including metrics such as VaR reduction, Expected 

Shortfall reduction, hedging efficiency, and risk-adjusted payoffs, underscored the consistent efficacy 

of our hedging strategy across various scenarios. These results provide valuable insights into the 

applicability and adaptability of the proposed hedging model in dynamic energy markets.  

Our research contributes not only to the academic understanding of weather derivatives and hedging 

but also offers practical insights for stakeholders navigating the complexities of energy markets. As 

we confront the imperative of transitioning to renewable energy sources, the applicability and 

adaptability of our proposed models become increasingly pertinent. This study, by unraveling the 

intricate interplay of market dynamics, weather derivatives, and hedging strategies, provides a 

valuable resource for academics, practitioners, and policymakers navigating the evolving landscape 

of energy markets.  
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